

Scientific Poster Session

Monday, October 20 | 5:15 – 6:15 pm EST

Using 'Omics' Data to Inform and Refine ASO Design

This study illustrates how we apply our experience and deep expertise to harness insights from large-scale public genomic and transcriptomic datasets to inform multiple stages of ASO discovery; from feasibility assessment to design and optimization. We will also discuss the critical importance of selecting appropriate datasets to support informed and effective decision-making throughout this process.

Emily Miyoshi, Ph.D.

Senior Bioinformatics Scientist, n-Lorem

Hosted by:

What is "omics" data?

- Data with the "omics" suffix generally means that all of what is being studied was quantified.
 - Genomics = all genes
 - Transcriptomics = all transcripts/RNAs
 - Proteomics = all proteins
- High-throughput sequencing is a method to generate "omics" data.

A data surplus problem

- Sequencing costs have dramatically decreased, consequently the number of "omics" datasets has exploded.
- What can we do with all this data? Advance ASO discovery
- Not all data are equal.
- We need to identify well-annotated, high-quality, and standardized data to reliably inform key steps in our ASO discovery workflow.

Early stages of ASO discovery

Feasibility
assessment

Design ASOs
for screening

Large-scale public datasets guide the evaluation of feasibility and design strategy

Reference genome assembly

Sources: GENCODE, Ensembl, NCBI

Exclude regions to more efficiently design ASOs

- Problematic sequences (low complexity/repetitive)
- Off-targets (sequences found in another gene)

Population-level genomics data

Ref. TACGCTGA

- 1 TATGCTGA
- 2 TATGCTGA
- 3 TACGCTCA
- 4 TATGCTGA

Sources: gnomAD, 1000 Genomes Project

Genetic variants in the population guide our ASO design strategy

- Distribution (location) within gene
- Allele frequencies (common vs. rare variants, lossof-function tolerance)

Tissue and cell transcriptomic and proteomic atlases

Sources: GTEx, Human Protein Atlas

- Cell line(s) for in vitro screening
- Off-target RNA expression

Technological advancements in sequencing lead to greater breadth and precision in ASO discovery

High-throughput sequencing methods

Long-read sequencing for the design of allele-selective ASOs

Benefits from long-read sequencing

Gapmer:

- Patient's DNA sample alone provides direct evidence of whether a variant is on the same allele as the pathogenic variant
- Increases the number of targetable variants

4 n-Lorem patients with a pathogenic indel in *GBE1*

Pseudoexon created from indel

Akman et al. (2015)

Two mutant *GBE1* isoforms identified by long-read sequencing

Benefits from long-read sequencing

Gapmer:

- Patient's DNA sample alone provides direct evidence of whether a variant is on the same allele as the pathogenic variant
- Increases the number of targetable variants

Splice-modulating ASO:

- Complete picture of the mutant transcript structure(s)
- Impacts ASO design, development of screening assays, and safety assessments

Conclusions

- Careful selection and integration of "-omic" datasets allows us to
 - Rapidly assess feasibility
 - More efficiently design ASOs with safety in mind
 - Develop ASOs that may benefit more patients
- Application of new technology advances therapeutic development

Acknowledgements

We thank our sequencing providers and collaborators for our internal data and the many large consortia who have generated and curated the public datasets. Figures were created with BioRender.com.

